
NASA Langley's Research and Technology-Transfer

Program in Formal Methods

Ricky W. Butler
Victor A. Carre~no
Ben L. Di Vito

Kelly J. Hayhurst
C. Michael Holloway

Paul S. Miner
Gerald L�uttgen (ICASE)
C�esar Mu~noz (ICASE)

Assessment Technology Branch
NASA Langley Research Center

Hampton, Virginia

http://shemesh.larc.nasa.gov/fm.html

June 2000

Abstract

This paper presents an overview of NASA Langley's research program in formal methods.

The major goals of this work are to make formal methods practical for use on high integrity

systems, to orchestrate the transfer of this technology to U.S. industry through use of carefully

designed demonstration projects, and to exploit this technology to help achieve NASA's goals

in aeronautics. Several direct technology transfer e�orts have been initiated that apply formal

methods to critical subsystems of real aerospace computer systems.

1

Contents

1 Rationale For a Formal Methods Research Program 4
1.1 The Problem With Software and Hardware . 5
1.2 What is Formal Methods . 6

2 Goals of Our Program, Strategy, and Research Team 7
2.1 Technology Transfer . 8

3 Recent Technology Development and Transfer Projects 9
3.1 Formal Analysis of AILS . 9
3.2 SPIDER . 9
3.3 Aviation Safety Program . 10
3.4 SpecTRM RL Development and Demonstration . 11
3.5 Customizable PVS . 11
3.6 Timing Analysis by Model Checking . 11
3.7 PVS Development . 11
3.8 Translating UML Into PVS . 12
3.9 Formal Methods Analysis of Mode Confusion . 12
3.10 Formal Analysis of Avionics Partitioning . 13
3.11 Streamlining Software Aspects of Certi�cation . 14
3.12 ICASE Research . 14
3.13 NASA Small Business Innovative Research Program 15

4 Past E�orts 16
4.1 Technology Transfer . 16

4.1.1 AAMP5/AAMP-FV Project . 16
4.1.2 Tablewise Project . 17
4.1.3 Space Shuttle Change Requests . 17
4.1.4 Union Switch and Signal . 18
4.1.5 Honeywell Navigation Speci�cation . 19
4.1.6 CSDL Scoreboard Hardware . 19
4.1.7 Allied Signal's Hybrid Fault Algorithms . 19

4.2 Fault-tolerant Systems . 20
4.2.1 The Reliable Computing Platform . 20
4.2.2 Clock Synchronization . 22
4.2.3 Byzantine Agreement Algorithms . 23

4.3 Other Fundamental Research . 23
4.3.1 EÆcient Validation of Superscalar Microprocessors 23
4.3.2 Speci�cation of Floating-point Arithmetic . 23
4.3.3 Hardware Veri�cation Using Coinduction . 24
4.3.4 PVS Libraries . 24
4.3.5 Formal Modeling of Dynamic Systems . 25
4.3.6 Veri�cation of Existing Ada Applications Software 25
4.3.7 Boeing Hardware Devices . 25
4.3.8 Asynchronous Communication . 26
4.3.9 Digital Design Derivation . 26
4.3.10 Civil Air Transport Requirements Speci�cation 26

2

5 Coordination Activities 26
5.1 Relationship to NASA Program OÆces . 26
5.2 FAA/RTCA Involvement . 26

6 Summary 27

3

1 Rationale For a Formal Methods Research Program

NASA Langley Research Center has been developing techniques for the design and validation of

ight critical systems for over two decades. Although much progress has been made in developing
methods to accommodate physical failures, design
aws remain a serious problem [73, 94, 49, 1, 65,
43, 106].

The following recent events show the potential of design errors for disaster:

� The maiden
ight of the Ariane 5 launcher (June 4 1996) ended in an explosion. Total loss
was over $850 million.

� Between June 1985 and January 1987, a computer-controlled radiation therapy machine,
called the Therac-25, massively overdosed six people, killing two.

� Replacement of defective Pentium processors costs Intel Corp. $500 million in 1995.

� The April 30, 1999 loss of a Titan I, which cost the taxpayers $1.23-billion, was due to
incorrect software (incorrectly entered roll rate �lter constant)

� December 1999 loss of the Mars Polar Lander was due to an incomplete software requirement.
A landing leg jolt caused engine shutdown.

� Denver Airport's computerized baggage handling system delayed opening by 16 months. Air-
port cost was $3.2 billion over budget.

� Patriot failure at Dharan (software error put tracking o� by 0.34 of a second)

A recent (January 24, 1999) report from the OÆce of Science and Technology Policy entitled
Information Technology For The Twenty-First Century: A Bold Investment In America's Future
states

Software research was judged by The President's Information Technology Advisory
Committee to be the highest priority area for fundamental research. From the desktop
computer to the phone system to the stock market, our economy and society have be-
come increasingly reliant on software. This Committee concluded that not only is the
demand for software exceeding our ability to produce it; the software that is produced
today is fragile, unreliable, and diÆcult to design, test, maintain, and upgrade.

Although the aviation industry has been more conservative and cautious in its adoption of infor-
mation technology than most other industries, it is beginning to su�er from the e�ects of software.
David W. Robb (editor) writes in the Oct 1996 issue Avionics Magazine:

Avionics have never been more clearly at center stage. The bene�ts of
at-panel and
heads-up displays, the precision of GPS positioning, ... and the
exibility of integrated
avionics, to name just a few areas, are transforming aviation almost faster than we can
print these words.

It is no secret that aircraft are becoming ever more dependent on their onboard elec-
tronics. The emerging world of CNS and Free Flight promises to accelerate this trend
dramatically. As the equipment grows more capable and sophisticated, so does the
challenge of testing and maintaining it.

4

Harry C. Stonecipher, President and Chief Operating OÆcer The Boeing Company. wrote in an
article entitled "Getting It Right: Defense Acquisition for the 21st Century" May 26, 1999:

... avionics systems account for about one-third of the
y-away cost of a military
aircraft and a signi�cant amount of its life-cycle cost. It goes without saying that our
war�ghters are increasingly dependent upon the use of avionics systems for everything
from navigation to targeting and to battle�eld management.

1.1 The Problem With Software and Hardware

Digital systems (both hardware and software) are notorious for their unpredictable and unreliable
behavior:

Studies have shown that for every six new large-scale software systems that are put
into operation, two others are cancelled. The average software development project
overshoots its schedule by half; larger projects generally do worse. And three quarters
of all large systems are \operating failures" that either do not function as intended or
are not used at all.

Despite 50 years of progress, the software industry remains years{perhaps decades{short
of the mature engineering discipline needed to meet the demands of an information-age
society[44].

Lauren Ruth Wiener describes the software problem in her book, Digital Woes: Why We Should
Not Depend Upon Software:

Software products|even programs of modest size|are among the most complex ar-
tifacts that humans produce, and software development projects are among our most
complex undertakings. They soak up however much time or money, however many
people we throw at them.

The results are only modestly reliable. Even after the most thorough and rigorous
testing some bugs remain. We can never test all threads through the system with all
possible inputs[134].

The hardware industry also faces serious diÆculties, as evidenced by the 1994 design error in
the Pentium
oating-point unit. In response to an outcry over the design
aw in the Pentium

oating point unit, Intel's President, Andy Grove, wrote on the comp.sys.intel Internet bulletin
board:

After almost 25 years in the microprocessor business, I have come to the conclusion
that no microprocessor is ever perfect; they just come closer to perfection with each
stepping. In the life of a typical microprocessor, we go thru [sic] half a dozen or more
such steppings....

Three basic strategies have been advocated for dealing with the design fault problem for the life-
critical system: (1) Testing (Lots of it) (2) Design Diversity (i.e. software fault tolerance: N-version
programming, recovery blocks, etc.), and (3) Fault Avoidance (i.e. formal speci�cation/veri�cation,
automatic program synthesis, reusable modules). The problem with life testing is that in order to
measure ultrareliability one must test for exorbitant amounts of time. For example, to measure
a 10�9 probability of failure for a 1 hour mission one must test for more than 109 hours (114,000
years).

5

The basic idea of design diversity is to use separate design and implementation teams to produce
multiple versions from the same speci�cation. At runtime, non-exact threshold voters are used to
mask the e�ect of a design error in one of the versions. The hope is that the design
aws will manifest
errors independently or nearly so. By assuming independence, one can obtain ultrareliable-level
estimates of reliability, even with failure rates for the individual versions on the order of 10�4=hour.
Unfortunately, the independence assumption has been rejected at the 99% con�dence level in several
experiments for low reliability software [68, 69].

Furthermore, the independence assumption cannot be validated for high reliability software
because of the exorbitant test times required. If one cannot assume independence then one must
measure correlations. This is infeasible as well; it requires as much testing time as life-testing the
system, because the correlations must be in the ultrareliable region in order for the system to be
ultrareliable. Therefore, it is not possible, within feasible amounts of testing time, to establish that
design diversity achieves ultrareliability. Consequently, design diversity can create an \illusion" of
ultrareliability without actually providing it. For a more detailed discussion, see [14, 13].

1.2 What is Formal Methods

Engineering relies heavily on mathematical models and calculation to make judgments about de-
signs. This is in stark contrast to the way in which software systems are typically designed|with
ad hoc technique and after-implementation testing. Formal methods bring to software and hard-
ware design the same advantages that other engineering endeavors have exploited: mathematical
analysis based on models. Formal methods are used to specify and model the behavior of a system
and to formally verify that the system design and implementation satisfy functional and safety
properties. Formal methods refers to the use of techniques from logic and discrete mathematics
in the speci�cation, design, and construction of computer systems (both hardware and software)1

and relies on a discipline that requires the explicit enumeration of all assumptions and reasoning
steps. Each reasoning step must be an instance of a relatively small number of allowed rules of
inference. In essence, system veri�cation is reduced to a calculation that can be checked by a
machine. In principle, these techniques can produce error-free design; however, this requires a
complete veri�cation from the requirements down to the implementation, which is rarely done in
practice.

Thus, formal methods is the applied mathematics of computer systems engineering. It serves
a similar role in computer design as Computational Fluid Dynamics (CFD) plays in aeronautical
design, providing a means of calculating and hence predicting what the behavior of a digital system
will be prior to its implementation.

The tremendous potential of formal methods has been recognized by theoreticians for a long
time, but the formal techniques have remained the province of a few academicians, with only a few
exceptions such as the Transputer [2] and the IBM CICS project [58]. NASA Langley's program has
helped to advance the capabilities of formal methods to the point where commercial exploitation
is near.

There are many di�erent types of formal methods with various degrees of rigor. The following
is a useful (�rst-order) taxonomy of the degrees of rigor in formal methods:

Level-1: Formal speci�cation of all or part of the system.
Level-2: Formal speci�cation at two or more levels of abstraction and paper and pencil

proofs that the detailed speci�cation implies the more abstract speci�cation.

1\Formal" means that the methods of reasoning are valid by virtue of their form and independent of their content.

6

Level-3: Formal proofs checked by a mechanical theorem prover.

Level 1 represents the use of mathematical logic, or a speci�cation language that has a formal
semantics, to specify the system. This can be done at several levels of abstraction. For example,
one level might enumerate the required abstract properties of the system, while another level
describes an implementation that is algorithmic in style.

Level 2 formal methods goes beyond Level 1 by developing pencil-and-paper proofs that the
concrete levels logically imply the abstract, property-oriented levels. Level 3 is the most rigorous
application of formal methods. Here one uses a semi-automatic theorem prover to make sure that
all of the proofs are valid. The Level 3 process of convincing a mechanical prover is really a process
of developing an argument for an ultimate skeptic who must be shown every detail.

It is important to realize that formal methods is not an all-or-nothing approach. The application
of formal methods to the most critical portions of a system is a pragmatic and useful strategy.
Although a complete formal veri�cation of a large complex system is impractical at this time, a
great increase in con�dence in the system can be obtained by the use of formal methods at key
locations in the system. For more information on the basic principles of formal methods, see [15].

2 Goals of Our Program, Strategy, and Research Team

The major goals of the NASA Langley research program are to make formal methods practical for
use on high integrity systems developed in the United States, to orchestrate the transfer of this
technology to industry through use of carefully designed demonstration projects, and to exploit this
technology to help achieve NASA's ambitious goals in aeronautics. Our intention is to concentrate
our research e�orts on the technically challenging areas of digital
ight-control systems design
that are currently beyond the state-of-the-art, while initiating demonstration projects in problem
domains where current formal methods are adequate. The challenge of the demonstration projects
should not be underestimated. That which is feasible for experts that have developed the tools and
methods is often diÆcult for practitioners in the aerospace industry. There is often a long \learning
curve" associated with the tools, the tools are not production-quality, and the tools have few or no
examples for speci�c problem domains. Therefore, we are setting up cooperative e�orts between
industry and the developers of the formal methods to facilitate the technology transfer process.

This strategy leverages the huge investment of ARPA and the National Security Agency in devel-
opment of tools and concentrates on the problems speci�c to the aerospace problem domain. NASA
Langley has not sponsored the development of any general-purpose theorem provers. However, the
technology transfer projects have lead to signi�cant improvements in the Prototype Veri�cation
System (PVS) theorem prover[97] that SRI International (SRI) is developing. Several domain-
speci�c tools have been sponsored: (1) Tablewise, (2) VHDL-analysis tool, and (3) DRS. These
tools are discussed in later sections.

It is also important to realize that formal methods include a large class of mathematical tech-
niques and tools. Methods appropriate for one problem domain may be totally inappropriate for
other problem domains. The following are some of the speci�c domains in which our program
has concentrated: (1) architectural-level fault tolerance, (2) clock-synchronization, (3) interactive
consistency, (4) design of hardware devices such as microprocessors, memory management units,
DMA controllers, (5) warning systems for closely spaced parallel landings, (6) design and veri�ca-
tion of application-speci�c integrated circuits (ASICS), (7) Space Shuttle software, (8) navigation
software, (9) decision tables, (10) railroad signaling systems, and (11)
ight guidance systems.

7

We are also interested in applying formal methods to many di�erent portions of the life-cycle,
such as (1) requirements analysis, (2) high-level design, (3) detailed design, and (4) implementation.

Often, there is a sizable e�ort associated with the development of the background mathematical
theories needed for a particular problem domain. Although such theories are reusable and in the
long run can become \cost-e�ective", the initial costs can be a deterrent for industry. Therefore,
one of the goals of the NASA Langley program is to build a large body of background theories
needed for aerospace applications.

We also have been involved with standards activities in order to move formal methods technology
into digital avionics standards.

2.1 Technology Transfer

The key to successful technology transfer is building a cooperative partnership with an industrial
research or development team. We have recognized that in order for such partnerships to work, it is
essential that NASA Langley become directly involved in speci�c problem domains of the aerospace
industry. Equally important is the need for industry to make investments to work with NASA on
joint projects and help devise realistic and practical demonstration projects. The ultimate goal
of our technology transfer process is for formal methods to become the \state-of-the-practice" for
developing high integrity digital avionics systems in the United States

Our basic approach to technology transfer is as follows. The �rst step is to �nd an industry
representative who is interested in formal methods, believes that there is a potential bene�t of such
methods, and is willing to work with us. The next step is to fund our formal methods research
team to apply formal methods to an appropriate application. This process allows the industry
representative to see what formal methods are and what they have to o�er, and it allows us (the
formal methods team) to learn the design and implementation details of state-of-the-practice com-
ponents so we can better tailor our tools and techniques to industry's needs. If the demonstration
project reveals a signi�cant potential bene�t, the next stage of the technology transfer process is
for the industry representative to initiate an internal formal methods program, and begin a true
cooperative partnership with us.

Another important part of our technology transfer strategy is working with the Federal Aviation
Administration (FAA) to update certi�cation methods with respect to formal methods. If the
certi�cation process can be rede�ned in a manner that awards credit for the use of formal methods,
a signi�cant step towards the transfer of this technology to the commercial aircraft industry will
have been accomplished.

Langley has also been sponsoring a series of workshops on formal methods. The �rst work-
shop, held in August 1990, focused on building cooperation and communication between U.S.
formal methods researchers[18]. The second, held in August 1992, focused on education of the U.S.
aerospace industry about formal methods[64]. The third workshop was held in May 1995[52], the
fourth in September 1997 [54], and the �fth in June 2000 [53].

Another component of our technology transfer strategy, is to use the NASA's Small Business
Innovative Research (SBIR) program to assist small businesses to develop commercially viable
formal methods tools and techniques. The �rst contracts under this program began in early 1994.

Finally, to facilitate technology transfer, much information on NASA Langley's formal methods
research is available on the Internet via the World Wide Web at the following location:

http://shemesh.larc.nasa.gov/fm/

8

3 Recent Technology Development and Transfer Projects

3.1 Formal Analysis of AILS

The Airborne Information for Lateral Spacing (AILS) is a research project within the Reduced
Spacing Operations (RSO) element of the Terminal Area Productivity (TAP) Program at NASA.
The objective of the AILS research is to increase the ability of aircraft to land on closely-spaced
parallel runways in Instrument Meteorological Conditions (IMC). The current minimum runway
separation for independent landings during IMC is 4300 feet. Using AILS, independent parallel
approaces down to 2500 feet separation are expected to be possible. The AILS system is an
airborne alerting system that uses Automatic Dependent Surveillance-Broadcast (ADS-B) datalink
and di�erential GPS.

This inhouse project is exploring the use formal methods to analytically demonstate that the
AILS alerting algorithm complies with its requirements for all possible parallel landing scenarios.
In particular, the following property is being proved:

For all possible states s1, s2 and all possible trajectories and assuming that one of the
airplanes is in its intended course at the time of the prediction, the algorithm modeled
by the function chtrack will warn i seconds before a collision.

3.2 SPIDER

The Scalable Processor-Independent Design for Electromagnetic Resilience (SPIDER) project is a
new project jointly sponsored by NASA and the FAA. The purpose of this project is to develop an
advanced fault-tolerant computer system, gain understanding of the new RTCA DO-254 guidance
document by developing SPIDER in accordance with its provisions, and generate training materials
for the FAA. The RTCA DO-254 document entitled \Design Assurance Guidance for Airborne
Electronic Hardware" is intended to provide a basis for the certi�cation of complex electronic
hardware devices used in future aircraft.

For the case study, a core subsystem of the Scalable Processor-Independent Design for Elec-
tromagnetic Resilience (SPIDER) has been selected. SPIDER is a new fault-tolerant architecture
under development at NASA Langley Research Center. Several factors motivated the choice of a
fault-tolerant system for this exercise. Hardware realizations of fault-tolerant protocols are gen-
erally compact designs; this allows for comprehensive treatment within the time constraints of a
training exercise. Also, the behavior of fault-tolerant devices is inherently complex; such a device
is clearly within the scope of DO-254. Furthermore, there is a considerable amount of research
literature addressing the formal analysis of fault-tolerant protocols; a fault-tolerant system is a
good candidate for a formal methods demonstration. Finally, any device expected to recover from
transient failures will necessarily need to deal with a bounded set of permanent failures, as well.

In the SPIDER architecture, the primary basis for fault-tolerance is a communication subsystem
called the Reliable Optical Bus (ROBUS). This concept builds on twenty years of fault-tolerant
computing research at NASA Langley Research Center2

The SPIDER architecture will be formally modelled and analyzed using a hybrid fault model
(See section 4.1.7.) Faulty nodes are globally classi�ed based on the locally observable characteris-
tics to other nodes within the system. The system is partitioned into Fault Containment Regions
(FCRs) that ensure independence of random physical failures. The failure status of an FCR is then

2The main concept was inspired by a fault-tolerant system designed as part of the Fly-by-Light/Power-by-Wire
(FBL/PBW) program.

9

one of four mutually exclusive possibilities:Good, Benign Faulty, Symmetric Faulty, and Asymmet-
ric Faulty. As part of the conceptual design activities, the algorithms for providing the fault-tolerant
services are being formally speci�ed and veri�ed using PVS (http://pvs.csl.sri.com/). The focus of
the veri�cation activities during the detailed design and implementation stages will be to preserve
the integrity of the veri�cation performed at the conceptual design level. We also intend to explore
elemental analysis and safety-speci�c analysis as we proceed but nothing has been done with these
techniques yet.

3.3 Aviation Safety Program

A recent competitive procurement (NRA 99-LaRC-4) resulted in 5 awards that will apply formal
methods:

� Honeywell Technology Center (Minneapolis): Develop and implement formal veri�cation tech-
niques for verifying the safety of IMA software using the DEOS operating system as the test
subject.

� Rockwell Collins Advanced Technology Center: Develop extensions to existing methods and
commercial o�-the-shelf tools that enable (1) formal requirements modeling and analysis, (2)
safety analysis and partitioning, (3) mode confusion detection, and (4) auto-generation of
code.

� Honeywell Engines and Systems: Utilize new Time Triggered Architecture (TTA) developed
in Europe for the automotive industry and formal veri�cation methods to develop a FTIMA
architecture. Targeted application is Full Authority Digital Engine Control (FADEC).

� Barron Associates/BF Goodrich: Develop formal veri�cation methods that can serve as a
basis for certifying non-adaptive neural nets for use on military and commercial aircraft.

� University of Virginia/Litton: Identify causes and develop tools to facilitate integration of
formal veri�cation methods into the software development lifecycle within an aerospace com-
pany.

This work is supported by the Flight Critical Systems Design and Validation component of the
Aviation Safety Program (AvSP).

Precision Approach
and Landing Flight Critical Systems

Health Monitoring &

& Validation
Systems Design
Flight Critical Rotocraft

HM

Flight
Systems

HM

AvSP

Control in
Adverse Conditions

Propulsion

HM

Airframe
Structures
HM

SAAP

10

3.4 SpecTRM RL Development and Demonstration

Safeware Engineering Corporation has been awarded a contract to improve their requirements
modeling and analysis tool named SpecTRM in the following ways:

� Improvement of the human interface to make SpecTRM easily useable by industry with
minimal training.

� Expanded visualizations (both static and dynamic) of SpecTRM models.

� Expand the static analysis capabilities of SpecTRM with model checking and theorem proving

� Application to Space Station Rendezvous and Docking

3.5 Customizable PVS

SRI international (with a subcontract with Honeywell HTC) has been awarded a three-year contract
to develop a customizable version of PVS [96, 95, 124].

The contractor intends to accomplish the following:

Year 1 : Provide a more customizable and more open system architecture for PVS; make
decision procedures available standalone and demonstrate their use with the Hon-
eywell HOPTs (Hierarchical Operational Procedure Tables) tool for analyzing
mode transition tables; undertake a demonstration project, tentatively identi�ed
as the Epic ASCB-D synchronization protocol

Year 2 : Develop a methodology and supporting technology for using PVS in conjunc-
tion with an industrially accepted engineering notation such as UML; provide a
"customizer's" interface.

Year 3 : Large demonstration project with Honeywell: Develop support for other develop-
ment and assurance processes used in aerospace certi�cation|for example, testing
and the MCDC (Modi�ed Condition Decision Coverage) criterion of DO-178B.

Several tutorial introductions to PVS are available [28, 10, 128, 15, 99, 127].

3.6 Timing Analysis by Model Checking

Odyssey Research Associates has been awarded a three-year contract to develop analysis methods
for real-time systems analysis. Timing aspects of embedded systems have been notoriously diÆcult
to analyzed and verify. This work will address some of the limitations of Rate Monotonic Analysis
(RMA) by applying model checking, a technique with successful industrial applications in hardware
design. In addition to schedulability, the new methods will be able to analyze such properties as
freedom from deadlock and from certain timing-dependent runtime errors. The goal is both to
increase the design space and to reduce the costs of veri�cation. The new methods will be applied
to reusable launch vehicle systems. The work will �rst concentrate on applying the methods to
Ada tasking programs executing under a runtime system that meets the Ravenscar Pro�le.

3.7 PVS Development

NASA Langley's formal methods program has exploited the capabilities of PVS (Practical Veri�-
cation System) developed by SRI International

11

http://www.csl.sri.com/sri-csl-fm.html

in no small measure. We have found the tool to be extremely capable, but have also desired
improvements. Consequently, NASA Langley has supported the development of abstract datatypes
in PVS [100] and the formal sematics for the speci�cation language [123]. In 1996 NASA Langley
sponsored the development of a tabular notation for PVS[98]. NASA Langley also supported the
development of the PVS validation suite and funded a task to develop an approach for eÆcient direct
execution of PVS speci�cations that can help users validate their speci�cation through exploration
of its behavior on test cases or symbolic execution. With the 2.3 release of PVS, users "run" a
speci�cation as if were a program, many times faster than can be achieved using rewriting. Static
analysis for live variables allows safe use of destructive updates so that compiled PVS runs at speeds
comparable to an imperative program.

Currently NASA Langley is funding SRI to develop an interactive simpli�er for PVS3 and to
develop a mechanization for theory interpretations4. The developed mechanization will make it
possible to show that one collection of theories is correctly interpreted by another collection of
theories under a user-speci�ed interpretation. In [97], Rushby describes how NASA's program has
shaped the development of PVS.

3.8 Translating UML Into PVS

Odyssey Research Associates has been tasked to develop a UML-based speci�cation and analysis
method approporiate for
ight guidance systems. The goal is to develop a speci�cation method
that uses standard UML notation and develop algorithms to translate these speci�cations into PVS
for analysis. ORA has de�ned a design style that is strictly hierarchical and local, declarative (i.e.
not operational), and object oriented. The de�ned UML idiom uses restricted class/state diagrams
and additional stereotypes for speci�cation. ORA has de�ned the semantics of the UML subset
formally. An executable de�nition generates formal PVS model of the UML design. The formal
model respects the OO structure of the UML.

3.9 Formal Methods Analysis of Mode Confusion

The goal of the new NASA Aviation Safety Program is to reduce the civil aviation fatal accident
rate by 80% in ten years and 90% in twenty years. This program is being driven by the accident
data with a focus on the most recent history. Pilot error is the most commonly cited cause for
fatal accidents (up to 70%), and thus is being given major consideration in this program. The
January 30, 1995 issue of Aviation Week lists 184 incidents and accidents involving mode awareness
including the Bangalore A320 crash (14 February 1990), the trasbourg A320 crash (20 January
1992), the Habsheim A320 crash (26 June 1988), and the Toulouse A330 crash (30 June 1994)
[2]. These incidents and accidents reveal that pilots sometimes become confused about what the

3Given x > y, z > 0, it is surprisingly hard to prove x=z > y=z in PVS. Since this is outside the domain if the
decision procedures, must �nd a lemma in prelude and instantiate correctly. But if we could say "multiply both
sides by z", it would be easy. The simpli�cation will replace a subexpression by a simpler one that is equivalent or
stronger. Currently, simpli�cation in PVS is automatic: hard to understand and to control

4The mechanization shall make it possible to show that one collection of theories is correctly interpreted by another
collection of theories under a user-speci�ed interpretation. The mechanization will generate the proof obligations
necessary to ensure the appropriate relationship, and provide theorem-proving enhancements (for example, rewriting
under congruences, and congruence closure) that enable these obligations to be discharged eÆciently. The PVS
grammar will been extended so that names can include mappings. The goal is to map uninterpreted types and
constants of a source theory into types and constants, respectively, of another theory.

12

cockpit automation is doing. Consequently, human factors research is an obvious investment area.
However, even a cursory look at the incident and ccident data reveals that the mode confusion
problem is much deeper than just training de�ciencies and a lack of human-oriented design. This
is readily acknowledged by human factors experts. For example, Charles E. Billings, writes in
Aviation Automation: The Search for a Human-Centered Approach, 1997 (pg 144):

... today's
ight management systems are \mode rich" and it is often diÆcult for pilots
to keep track of them (see Fig 9.2). The second problem, which is related to the �rst
involves lack of understanding by pilot's of the system's internal architecture and logic,
and therefore a lack of understanding of what the machine is doing, and why, and what
it is going to do next.

Similarly, Sarter and Woods write in Decomposing Automation (1994):

What is needed is better understanding of how the machine operates, not just how to
operate the machine.

It seems that further progress in human factors will only come through a deeper scrutiny of the
internals of the automation. Formal methods can contribute in this arena. The fundamental goal
of formal methods is to capture requirements, designs, and implementations in a mathematically-
based model that can be analyzed in a rigorous manner. By capturing the internal behavior of a

ight deck in a rigorous and detailed formal model, the dark corners of a design can be analyzed.

This project is exploring two complementary strategies based on a formal model:

� Visualization: Create and display a clear, executable formal model of the automation that is
easily understood by
ight crew and use it to drive the
ight deck simulation during training.

� Analysis: Conduct mathematical analysis of the model and search for mode confusion poten-
tial.

The �rst phase of a new project involving NASA Langley and Rockwell Collins in applying
formal methods to a realistic business jet
ight guidance system has been completed and was
reported at DASC'98 [16]. A �nal report on the phase I work has been published[80].

3.10 Formal Analysis of Avionics Partitioning

The RTCA Special Committee 182 (SC-182) has been established to develop a Minimum Opera-
tional Performance Standard (MOPS) for an Avionics Computer Resource (ACR). The ACR will
have the capability of performing multiple aircraft functions through use of partitioning. Funda-
mental to the success of the ACR strategy is a guarantee that the ACR platform will prevent any
application from corrupting another. In particular, the ACR must provide:

� space partitioning (no matter what an application does it cannot corrupt the memory of
another application), and

� time partitioning (no matter what an application does it cannot prevent another application
from obtaining its scheduled allocation of CPU time)

while supporting:

� inter-partition communications, and

13

� common modular/con�gurable I/O (the ACR must allow the partitions access to external
devices through a suite of bus protocols such as ARINC 429, ARINC 629, etc.)

Our �rst e�orts have been directed towards developing an abstract formal model of space parti-
tioning that can serve as the basis for evaluating the design of an ACR[32]. The PVS formal model
is based on mathematical modeling techniques developed by the computer security community.
The model has been used on three candidate designs, each an abstraction of features found in real
systems.

SRI International was funded by the FAA and NASA to identify the requirements for partition-
ing in integrated modular avionics (IMA) and to explore how to achieve those requirements with
very high assurance. The �nal report entitled \ Partitioning in Avionics Architectures: Require-
ments, Mechanisms and Assurance" has been published [114].

3.11 Streamlining Software Aspects of Certi�cation

Kelly Hayhurst served as the Technical Program Manager for a FAA initiative called Streamlining
Software Aspects of Certi�cation (SSAC) starting in November 1997. The goal of the SSAC program
was to identify and eliminate unnecessary costs in software aspects of certi�cation for both airborne
and ground-based systems. Unnecessary costs in certi�cation not only waste money, but they also
can delay adopting new, safety-enhancing technologies.

Since January 1998, the SSAC team has conducted 3 industry workshops and 1 FAA workshop
to identify speci�c software issues to be addressed by the program. The team also conducted a
survey of U.S. companies about the extent and signi�cance of the issues identi�ed through the
workshops. A report describing the results and recommendations was published and is available
electronically. The FAA response to the survey recommendations and the letter accompanying this
response are also available in PDF format.

In October 1999, the FAA discontinued funding for the SSAC team activities. However, there
continues to be interest in the SSAC program results and recommendations. A presentation on the
current status of the SSAC program was given at the FAA National Software Conference on April
20, 2000. See

http://shemesh.larc.nasa.gov/ssac/

to obtain details about these workshops and copies of the workshop reports. A published report
[51] about the project is available electronically at

http://shemesh.larc.nasa.gov/ssac/workshop3.html

The FAA response to the survey recommendations and the letter accompanying this response are
also available in PDF format at this web page.

3.12 ICASE Research

The Formal Methods research program at NASA Langley's Institute For Computer Applications
in Science and Engineering (ICASE) is developing and applying techniques and tools for the speci-
�cation, analysis, and veri�cation of aerospace digital systems. Research e�orts focus especially on
the investigation of heterogeneous veri�cation technologies in order to enhance the utility of for-
mal methods for specifying, analyzing, and verifying large-scale systems. Topics of interest/under
investigation include:

14

� applying state-exploration methods to the veri�cation of
ight-guidance systems and to the
analysis of mode confusion

� formalizing the Airborne Information System for Lateral Spacing (AILS)

� developing compositional approaches to Statecharts semantics (including UML Statecharts)

� extending static type checking in programming languages (such as Java)

� designing eÆcient higher-order uni�cation algorithms for theorem proving

� combining process algebras and temporal logics

The following are recent publications:

Cesar Munoz and Victor Carreno, Aircraft trajectory modeling and alerting algorithm
veri�cation, NASA/CR-2000-210097 ICASE Report No. 2000-16, April 2000, pp. 25.

Gerald Luettgen, Michael von der Beeck, and Rance Cleaveland, A Compositional ap-
proach to Statecharts semantics, NASA/CR-2000-210086 ICASE Report No. 2000-12,
March 2000, pp. 20.

Rance Cleaveland and Gerald Luettgen, Model checking is re�nement - Relating Buechi
testing and linear-time temporal logic, NASA/CR-2000-210090 ICASE Report No.
2000-14, March 2000, pp. 25.

3.13 NASA Small Business Innovative Research Program

In an e�ort to encourage small businesses to develop good formal methods tools, we have partic-
ipated in the NASA Small Business Innovative Research (SBIR) program since 1993. The SBIR
program provides the opportunity for small businesses to submit proposals in various research areas
each year. In Phase 1, companies whose proposals are chosen in a NASA-wide selection process
are awarded a 6-month contract to conduct initial research and feasiblity studies. At the end of
this period, the companies submit a Phase 2 proposal for up to two years of additional research
and development. Companies whose proposals are chosen in this NASA-wise selection process are
awarded a two year contract to complete the work proposed. More information on NASA's SBIR
program is available on the World-Wide Web at

http://www.sbir.nasa.gov/.

Since our participation in the SBIR program began, we have advocated eight formal methods
proposals for Phase I funding; �ve of these have been chosen by NASA to receive funding. Two
of the three non-funded proposals were for work substantially similar to work that was eventually
funded, so we have been very successful in advocating those proposals that we like.

We have recommended four of �ve proposals for Phase II funding. For one, the Phase II selection
process has not be completed. The other three have all been chosen by NASA to receive funding.
The following list shows the year of selection, proposal title, and company for each of these three:

1. 1998, Multi-Formal Hardware Veri�cation System, Levetate Design Systems, Inc.
(http://www.levetate.com/)

2. 1997, Veri�ed VHDL Synthesizable Cores, Derivation Systems Inc.
(http://www.derivation.com/)

15

3. 1994, Analysis Tools for VHSIC Hardware Description Language, Odyssey Research Asso-
ciates, Inc. (http://www.oracorp.com/)

4. 1994, Digital Design Derivation System for Hardware Synthesis, Derivation Systems, Inc.
(http://www.derivation.com/)

4 Past E�orts

This section describes previous work in three categories: technology transfer, fault-tolerant systems,
other fundamental research.

4.1 Technology Transfer

4.1.1 AAMP5/AAMP-FV Project

In 1993, NASA Langley initiated a joint project involving Collins Commercial Avionics and SRI
International. The goal was to investigate the application of formal techniques to a commercial
microprocessor design, the Collins AAMP5 microprocessor. The AAMP5 is the latest member
of the CAPS/AAMP family of microprocessors and is object code compatible with the AAMP2
processor [3]. The CAPS/AAMP family of microprocessors has been widely used by the commercial
and military aerospace industries. Some examples of use of earlier members of the family include:
(1) Boeing 747-400 IDS, (2) Boeing 737-300 EFIS, and (3) Boeing 757,767 AFDS

The �rst phase of the project consisted of the formal speci�cation of the AAMP5 instruction set
and microarchitecture using SRI's PVS. While formally specifying the microprocessor, two design
errors were discovered in the microcode. These errors were uncovered as a result of questions
raised by the formal methods researchers at Collins and SRI while seeking to formally specify the
behavior of the microprocessor[79, 132]. The Collins formal methods team believes that this e�ort
has prevented two signi�cant errors from going into the �rst fabrication of the microprocessor.

The second phase of the project consisted of formally verifying the microcode of a representative
subset of the AAMP5 instructions. Collins seeded two errors in the microcode provided to SRI in
an attempt to assess the e�ectiveness of formal veri�cation. Both of these errors (and suggested
corrections) were discovered while proving the microcode correct[79]. It is noteworthy that both
the level 2 and level 3 applications of formal methods were successful in �nding bugs. Based on the
success of the AAMP5 project, a new e�ort was initiated with Rockwell-Collins to apply formal
methods in the design level veri�cation of a microprocessor, currently designated as AAMP-FV.
This project is nearing completion.

This work has has signi�cant impact on the development of a hardware veri�cation capability
within PVS [30]. This project has also had major impact on Rockwell Collins. There are now four
engineers at Collins that are skilled in formal methods. In the fall of 1996 Rockwell Collins hired
a formal methods expert whose full-time job is to integrate the use of formal methods into their
product lines.

Rockwell Collins used the formal speci�cations of the AAMP5/AAMP-FV micro-architecture
as a means to design and perform prototype testing on their JEM1 Java chip. Collins was the
�rst supplier to SUN Microsystems to deliver a microprocessor that directly executes the JAVA
instruction set.

16

4.1.2 Tablewise Project

Under NASA funding, Odyssey Research Associates worked with Honeywell Air Transport Sys-
tems Division (Phoenix) beginning in 1993 to study the incorporation of formal methods into the
company's software development processes. As part of this work, ORA developed a prototype tool,
called TableWise, to analyze the characteristics of certain types of operational procedure tables.
An operational procedure table is a tablar format for de�ning the rules that choose a particular
action to perform based on the values of certain parameters; they are equivalent in expressive power
to �nite state machines.

ORA concentrated on a subset of operational procedure tables, called decision tables. TableWise
uses a generalization of Binary Decision Diagrams to determine if a decision table is exclusive (for
every combination of parameter values, at most one action can be chosen) and exhaustive (for every
combination of parameter values, at least one action can be chosen). The tool is also capable of
automatically generating documentation and Ada code from a table[56]. ORA also investigated
methods for generating software test cases directly from tables[55], and for reverse engineering
tabular speci�cations from existing avionics code.

Boeing Defense and Space Systems has funded ORA to develop an extension to Tablewise:
to enable it to reason about arithmetic expressions that are commonplace in navigation system
decision logic at Boeing. ORA is also building an interface between Tablewise and Boeing's GSDS
(an internal CAD tool) system. It will convert GSDS STM (State Transition Matrix) tables to
tablewise tables and will allow GSDS designers to check Boeing STM tables for completeness and
consistency.

4.1.3 Space Shuttle Change Requests

A team spread across three NASA centers (LaRC, JSC, and JPL), together with support from
Loral Space Information Systems 5 , SRI International, and V��GYAN Inc., was formed to study the
application and technology transfer of formal methods to NASA space programs from 1992 until
1996. The NASA Formal Methods Demonstration Project for Space Applications focused on the
use of formal methods for requirements analysis because the team believed that formal methods
are more practically applied to requirements analysis than to late-lifecycle development phases [61].
This proved to be a valuable decision.

In 1993 a formal speci�cation of a very mature piece of the Space Shuttle
ight control require-
ments called Jet Select was developed. Few proofs were produced for the �rst speci�cation, but 46
issues were identi�ed and several minor errors were found in the requirements. A second speci�-
cation was produced for an abstract (i.e., high level) representation of the Jet Select requirements.
This abstraction, along with the 24 proofs of key properties, was accomplished in under 2 work
months, and although it only uncovered 6 issues, several of these issues were signi�cant [26].

NASA Langley's primary role in 1994{95 included support for three Space Shuttle software
change requests (CRs). One CR concerned the integration of new Global Positioning System (GPS)
functions, while a second CR concerned a new function to control contingency aborts known as
Three Engine Out (3E/O), and the third CR concerned improved crew displays when entering the
\heading alignment cylinder" (HAC) during landing.

Due to the size and complexity of the GPS CR, the trial formal methods task focused on just
a few key areas. Formal speci�cations were developed for the new Shuttle navigation \principal
functions" known as GPS Receiver State Processing and GPS Reference State Processing, using the

5now Lockheed Martin Space Information Systems

17

language of SRI's Prototype Veri�cation System (PVS). The speci�cations were revised twice to
re
ect major requirements changes during the study period. As a result of the three formalization
e�orts, a total of 86 issues or minor discrepancies were discovered in the CR. These items were
submitted as oÆcial issues during three requirements inspections, leading to a favorable reaction
from the Shuttle requirements community [37, 31].

The Three Engine Out (3E/O) Task is executed each cycle during powered
ight until either a
contingency abort maneuver is required or progress along the powered
ight trajectory is suÆcient
to preclude a contingency abort even if three main engines fail. We developed and analyzed a
formal model of the series of sequential maneuvers that comprise the 3E/O algorithm. A total of 19
potential issues were found, including undocumented assumptions, logical errors, and inconsistent
and imprecise terminology. The formal speci�cations were analyzed using the Mur� system [38],
which performs analysis of �nite state systems using model checking. The results of this study are
reported in [27].

Our role in support of the HAC CR was much smaller than for GPS or 3E/O. Key portions of
the the control logic for managing the HAC crew displays are expressed in the CR in a tabular form.
Two HAC tables were analyzed for consistent and complete enabling conditions using a new PVS
feature for analyzing tabular speci�cations. One table was found to have overlapping conditions,
meaning that several rows were not disjoint. A corrected version was produced and both tables
were then proved to satisfy the well-formedness criteria using PVS [105].

In addition to the Shuttle activities, LaRC contributed to two NASA guidebooks produced
by the inter-center team. The �rst volume of the guidebook, published in 1995, is intended for
managers of NASA projects who will be using formal methods in requirements analysis activities
[92]. The second volume was published in 1997 and was aimed at practitioners [93]. LaRC's e�orts
in 1996 were directed primarily at this second guidebook volume, with members of the LaRC team
having been the lead contributors.

4.1.4 Union Switch and Signal

As part of a joint research agreement, NASA Langley formal methods researchers collaborated
with engineers at Union Switch and Signal (US&S) to use formal methods in the design of railway
switching and control applications. Railway switching control systems, like digital
ight control
systems, are safety critical systems. US&S is the leading U.S. supplier of railway switching control
systems.

The initial project, started in 1993, was a cooperative e�ort between NASA, US&S, and Odyssey
Research Associates (ORA). The result of this �rst project was a formal mathematical model of a
railway switching network, de�ned in two levels. The top level of the model provides the mechanisms
for de�ning the basic concepts: track, switches, trains and their positions and control liners of a
train (i.e. how far down the track it has clearance to travel.) The second level is a formalization of
the standard scheme used in railroad control, the block model control system. A level 2 proof that
the �xed block control system is \safe" with respect to the top level model was also completed [57]

Work between US&S, ORA, and NASA concentrated on safety issues within the context of a
CAD system begin developed by US&S for use by railway control engineers. An area of particular
concern has been the correctness of internal compilation processes which translate graphical repre-
sentations of control diagrams into code that will be executed on US&S's proprietary V FRAME++

architecture.

18

4.1.5 Honeywell Navigation Speci�cation

A cooperative research e�ort was initiated in 1993 with Honeywell Air Transport Systems Division
(Phoenix) to study the incorporation of formal methods into the company's software development
processes. In the initial project in this e�ort, NASA Langley funded ORA to identify a component
of the Boeing 777 system to which formal speci�cation techniques could be applied, and to develop
the formal speci�cations for that component. ORA, in collaboration with personnel from Langley
and Honeywell, chose the navigation subsystem as a suitable application.

Using documents supplied to them by Honeywell, ORA developed a speci�cation that addressed
the following aspects of navigation: (1) basic mathematical concepts such as functions over the
reals, and physical units such as distance, velocity, and acceleration, (2) de�nition of objects such
as aircraft, radios, sensors, navigation aids, and the navigation database, (3) de�nition of algorithms
such as complementary �lter processing, navigation aid selection, navigation mode selection, and
position determination, and (4) relating the mathematical model to Ada by partitioning the system
in Ada package speci�cations, and annotating individual Ada functions and procedures with formal
speci�cations. The speci�cation was done using ORA's Penelope tool.

4.1.6 CSDL Scoreboard Hardware

A joint project between ORA and Charles Stark Draper Laboratory (CSDL) was completed in 1993.
NASA Langley and the Army had funded CSDL to build advanced, fault-tolerant computer systems
for over two decades. During this time, CSDL became interested in the use of formal methods to
increase con�dence in their designs. ORA was given the task of formally specifying and verifying
a key circuit (called the scoreboard) of the Fault-Tolerant Parallel Processor (FTPP) [50] in Clio
[131]. The formal veri�cation uncovered previously unknown design errors. When the scoreboard
chip was fabricated, it worked without any error manifestation. It was the �rst time that CSDL
produced a chip that worked \perfectly" on a �rst fabrication. CSDL credits VHDL-development
tools and formal methods for the success.

4.1.7 Allied Signal's Hybrid Fault Algorithms

Thambidurai and Park (Allied-Signal) introduced a hybrid fault model (1988) that classi�ed faults
into three categories: asymmetric, symmetric and crash. They further suggested the need for
and developed an algorithm that had capabilities beyond that of the earlier Byzantine generals
algorithms. In particular, their algorithm can mask the e�ects of a less severe class of faults, in a
more e�ective way6. A formal analysis by SRI discovered
aws in Allied-Signal's algorithm Z and
together with Allied Signal, they developed an improved algorithm [76, 75, 77].

The newly developed hybrid-fault theory was then applied to the analysis of the Charles Stark
Draper Labs \Fault-Tolerant Processor" (FTP). A unique feature of this architecture is its use of
\interstages" to relay messages between processors. These are signi�cantly smaller than a processor
and lead to an asymmetric architecture that is far more eÆcient than the traditional Byzantine
agreement architectures7. The SRI work not only formalized the existing informal analysis but
extended it to cover a wider range of faulty behavior[78]. Also, SRI generalized their clock syn-
chronization work to encompass the hybrid fault model [110].

6This was done during the development of the [Multicomputer Architecture for Fault Tolerance (MAFT) system
[133].

7This combination of algorithm, architecture, and fault model represents the best known compromise between
economy and fault tolerance. Other combinations either tolerate less faults, or less severe kinds of faults, for a given
level of redundancy, or require more hardware to tolerate the same number and kinds of faults.

19

Next, SRI investigated authenticated Byzantine Agreement while extending fault model to
include link failures as well as hybrid faults in the processors [46]. The analysis was performed
using both the PVS theorem proving system and model checking (Stanford Mur�). Tradeo�s
between di�erent algorithms were explored via symbolic fault-injection with the Mur� Tool. There
is currently much interest in combining model checking and general purpose theorem proving. Some
e�ort in this direction has been sponsored by the NASA program [104, 29].

Other work by SRI applied these ideas to recon�gurable, fault-tolerant systems [112].

4.2 Fault-tolerant Systems

The goal of this focus area was to create a formalized theory of fault tolerance including redundancy
management, clock synchronization, Byzantine agreement, voting, etc. Much of the theory devel-
oped here is applicable to future fault-tolerant systems designs. A detailed design of a fault-tolerant
reliable computing base, the Reliable Computing Platform (RCP), has been developed and proven
correct. It is hoped that the RCP will serve as a demonstration of the formal methods process and
provide a foundation that can be expanded and used for future aerospace applications. It is one of
the largest formal veri�cations ever performed.

The RCP architecture was designed in accordance with a system-design philosophy called \De-
sign For Validation" [63, 62].

A major objective of this philosophy is to minimize the amount of experimental testing required
and maximize the ability to reason mathematically about correctness of the design. Although
testing cannot be eliminated from the design/validation process, the primary basis of belief in the
dependability of the system must come from analysis rather than from testing.

4.2.1 The Reliable Computing Platform

The Reliable Computing Platform dispatches control-law application tasks and executes them on
redundant processors. The intended applications are safety critical with reliability requirements
on the order of 1 � 10�9. The reliable computing platform performs the necessary fault-tolerant
functions and provides an interface to the network of sensors and actuators.

The RCP operating system provides the applications software developer with a reliable mech-
anism for dispatching periodic tasks on a fault-tolerant computing base that appears to him as
a single ultrareliable processor. A multi-level hierarchical speci�cation of the RCP is shown in
�gure 1.

The top level of the hierarchy describes the operating system as a function that sequentially
invokes application tasks. This view of the operating system will be referred to as the uniprocessor
speci�cation (US), which is formalized as a state transition system and forms the basis of the
speci�cation for the RCP. Fault tolerance is achieved by voting results computed by the replicated
processors operating on the same inputs. Interactive consistency checks on sensor inputs and
voting of actuator outputs require synchronization of the replicated processors. The second level in
the hierarchy (RS) describes the operating system as a synchronous system where each replicated
processor executes the same application tasks. The existence of a global time base, an interactive
consistency mechanism and a reliable voting mechanism are assumed at this level.

Level 3 of the hierarchy (DS) breaks a frame into four sequential phases. This allows a more
explicit modeling of interprocessor communication and the time phasing of computation, commu-
nication, and voting. At the fourth level (DA), the assumptions of the synchronous model must
be discharged. Rushby and von Henke [115] report on the formal veri�cation of Lamport and
Melliar-Smith's [71] interactive-convergence clock synchronization algorithm. This algorithm can

20

Uniprocessor System Model (US)

j

Fault-tolerant Replicated Synchronous Model (RS)

j

Fault-tolerant Distributed Synchronous Model (DS)

j

Fault-tolerant Distributed Asynchronous Model (DA)

j j

Clock Sync Property Minimal Voting DA (DA minv)

j j

Clock Sync Algorithm Local Executive Model (LE)

j

Hardware/Software Implementation

Figure 1: Hierarchical Speci�cation of the Reliable Computing Platform.

serve as a foundation for the implementation of the replicated system by bounding the amount of
asynchrony in the system so that it can duplicate the functionality of the DS model. Dedicated
hardware implementations of the clock synchronization function are a long-term goal.

In the LE model, a more detailed speci�cation of the activities on a local processor are presented.
In particular, three areas of activity are elaborated in detail: (1) task dispatching and execution,
(2) minimal voting, and (3) interprocessor communication via mailboxes. An intermediate model,
DA minv, that simpli�ed the construction of the LE model was used. Some of the re�nements
occur in the DA minv model and some in the LE model. For example, the concept of minimal
voting is addressed in considerable detail in the DA minv model. Of primary importance in the
LE speci�cation is the use of a memory management unit by the local executive in order to prevent
the overwriting of incorrect memory locations while recovering from the e�ects of a transient fault.

The top two levels of the RCP were originally formally speci�ed in standard mathematical
notation and connected via mathematical (i.e. level 2 formal methods) proof [36, 35, 33]. Under
the assumption that a majority of processors is working in each frame, the proof establishes that
the replicated system computes the same results as a single processor system not subject to fail-
ures. SuÆcient conditions were developed that guarantee that the replicated system recovers from
transient faults within a bounded amount of time. SRI subsequently generalized the models and
constructed a mechanical proof in Ehdm [107]. Next, the local team developed the third and fourth
level models. The top two levels and the two new models (i.e. DS and DA) were then speci�ed in
Ehdm and all of the proofs were done mechanically using the Ehdm 5.2 prover [11, 34].

Both the DA minv model and the LE model were speci�ed formally and have been veri�ed using
the Ehdm veri�cation system[12]. All RCP speci�cations and proofs are available electronically via
the Internet using anonymous FTP or World Wide Web (WWW) access. Anonymous FTP access
is available through the host deduction.larc.nasa.gov using the path pub/fm/larc/RCP-specs.
WWW access to the FTP directory is provided through the NASA Langley Formal Methods Pro-
gram home page: http://atb-www.larc.nasa.gov/fm.html

Two recent publications by SRI provide some new theoretical insights [112, 113].

21

4.2.2 Clock Synchronization

The redundancy management strategies of virtually all fault-tolerant systems depend on some form
of voting, which in turn depends on synchronization. Although in many systems the clock synchro-
nization function has not been decoupled from the applications (e.g. the redundant versions of the
applications synchronize by messages), research and experience have led us to believe that solving
the synchronization problem independently from the applications design can provide signi�cant sim-
pli�cation of the system [70, 45]. The operating system is built on top of this clock-synchronization
foundation and thus the correctness of this foundation is essential. The clock synchronization algo-
rithm and its implementation are prime candidates for formal methods. The veri�cation strategy
shown in �gure 2 is being explored.

Maximum Clock Skew Property
"
j

Synchronization Algorithm
"
j

Digital Circuit Implementation

Figure 2: Hierarchical Veri�cation of Clock Synchronization

The top-level in the hierarchy is an abstract property of the form:

8 non-faulty p; q : jCp(t)� Cq(t)j < Æ

where Æ is the maximum clock skew guaranteed by the algorithm as long as a suÆcient number
of clocks (and the processors they are attached to) are working. The function Cp(t) gives the
value of clock p at real time t. The middle level in the hierarchy is a mathematical de�nition
of the synchronization algorithm. The bottom level is a detailed digital design of a circuit that
implements the algorithm. The bottom level is suÆciently detailed to make translation into silicon
straight forward.

The veri�cation process involves two important steps: (1) veri�cation that the algorithm satis�es
the maximum skew property and (2) veri�cation that the digital circuitry correctly implements
the algorithm. The �rst step was completed by SRI International. The �rst such proof was
accomplished during the design and veri�cation of SIFT [71]. The proof was done by hand in the
style of journal proofs. More recently this proof step was mechanically veri�ed using the Ehdm
theorem prover[115, 116]. In addition, SRI mechanically veri�ed Schneider's clock synchronization
paradigm [117] using Ehdm[125, 126]. A further generalization was found at NASA Langley [81]8.
The design of a digital circuit to distribute clock values in support of fault-tolerant synchronization
was completed by SRI and was partially veri�ed.9 CLI reproduced the SRI veri�cation of the
interactive convergence algorithm using the Boyer-Moore theorem prover [139].

NASA Langley researchers designed and implemented a fault-tolerant clock synchronization
circuit capable of recovery from transient faults [83, 82, 81]. The top-level speci�cation for the design
is the Ehdm veri�cation of Schneider's paradigm. The circuit was implemented with programmable
logic devices (PLDs) and FOXI �ber optic communications chips [88].

8The bounded delay assumption was shown to follow from the other assumptions of the theory.
9Unlike the NASA circuit, the SRI intent is that the convergence algorithm be implemented in software.

22

Using a combination of formal techniques, a veri�ed clock synchronization circuit design has
also been developed[89]. The principal design tool was the Digital Design Derivation system (DDD)
developed by Indiana University[7]. Some design optimizations that were not possible within DDD
were veri�ed using PVS.

4.2.3 Byzantine Agreement Algorithms

Fault-tolerant systems, although internally redundant, must deal with single-source information
from the external world. For example, a
ight control system is built around the notion of feedback
from physical sensors such as accelerometers, position sensors, and pressure sensors. Although
these can be replicated (and they usually are), the replicates do not produce identical results.
To use bit-by-bit majority voting, all of the computational replicates must operate on identical
input data. Thus, the sensor values (the complete redundant suite) must be distributed to each
processor in a manner which guarantees that all working processors receive exactly the same value
even in the presence of some faulty processors. This is the classic Byzantine Generals problem
[72]; algorithms to solve the problem are called Byzantine agreement algorithms. CLI investigated
the formal veri�cation and implementation of such algorithms. They formally veri�ed the original
Marshall, Shostak, and Lamport version of this algorithm using the Boyer Moore theorem prover
[4]. They also implemented this algorithm down to the register-transfer level and demonstrated
that it implements the mathematical algorithm [5], and then subsequently veri�ed the design down
to a hardware description language HDL developed at CLI [91]. A more eÆcient mechanical proof
of the oral messages algorithm was also developed by SRI[108].

ORA also investigated the formal veri�cation of Byzantine Generals algorithms. They focused
on the practical implementation of a Byzantine-resilient communications mechanism between Mini-
Cayuga micro-processors [130, 6]. The Mini-Cayuga is a small but formally veri�ed microprocessor
developed by ORA. It was a research prototype and was not fabricated.

4.3 Other Fundamental Research

4.3.1 EÆcient Validation of Superscalar Microprocessors

SRI has developed a new approach to decompose and incrementally build the proof of correctness of
pipelinedmicroprocessors. The approach centers around the construction of an abstraction function
using completion functions, one per un�nished instruction in the pipeline. In addition to avoiding
the term size and case explosion problem that limits the pure
ushing approach, the new method
helps localize errors and handles stages with iterative loops. A �nal report has been written and is
under review to be published as a NASA CR [129].

4.3.2 Speci�cation of Floating-point Arithmetic

Signi�cant portions of the ANSI/IEEE-854 [60] standard have been de�ned using the PVS [84]
and HOL [19] systems. IEEE-854 is a standard for radix-independent
oating-point arithmetic.
The main motivating factors for the formalization of the standard are 1) The creation of a formal
speci�cation against which an implementation (such as the AAMP5 [79]) could be veri�ed; 2) The
highly publicized
oating-point divide
aw in the Intel Pentium (R) processor [118].

The formalization of the standard has brought to light the interesting and challenging issues
of translating a natural language document into a logic based language in a precise, unambiguous,
and accurate manner. In addition, the formalization of the standard in two di�erent systems has
given the opportunity to compare the veri�cation systems and speci�cation styles [23].

23

A parameterized formal theory of subtractive
oating point division algorithms has been de-
veloped in the PVS speci�cation language. This parameterized theory de�nes a general algorithm
that covers a broad class of algorithms and can serve as a tool for design tradeo�s. This generalized
theory has been formally proved to satisfy the IEEE-854 standard for
oating point arithmetic.
The proof covers the entire class of algorithms. Thus, after an optimal algorithm has been selected
for a particular target technology, and the parameters are shown to be type-correct, one knows that
your selected algorithm is formally consistent with the IEEE standard. This work was presented
at the Formal Methods in Computer-Aided Design Conference (FMCAD) on Nov. 6-8, 1996 [87].

4.3.3 Hardware Veri�cation Using Coinduction

Hardware development today is fundamentally dependent upon the use of simulation models to
gain con�dence in prototype designs. Billions of test cases are run on the prototype models in
order to cover the increasingly large input space. If the veri�cation process fails to detect errors,
the consequence can be expensive. The Pentium
oating-point division bug cost Intel $475 million.

In this project a di�erent approach was pursued: construct a formal model of design and prove
mathematically that design computes intended function for complete input space. Unfortunately
there are have been many technical problems associated with this approach in the past. Often
the initial value of state had to be retained in expression, even when they are no longer relevant.
The formal models included the number of clock ticks since start of computation, which made it
diÆcult to verify revisions to a design, particular for aggressive optimizations. Also the formal
models restricted the design space available and veri�cation was still expensive.

This inhouse project sought to overcome these limitations through use of a better formal model:
stream equations. The designs, which are represented as system of equations, can be re�ned using
algebraic transformations. The state component represents the current state and not the initial
state and there is no explicit clock parameter. There is also a signi�cant potential for a much
more eÆcient veri�cation process. Stream equations lead to a corecursive de�nition of hardware
behavior and hence allows veri�cation by coinduction, a very eÆcient approach for verifying design
optimizations.

A general mechanized support for reasoning about streams (within theorem proving system
PVS was developed and demonstrated on two signi�cant case studies: (1) Fault-Tolerant Clock
Synchronization Circuit [89, 86] and, (2) Floating Point Division[85] .

4.3.4 PVS Libraries

There is a sizable e�ort associated with the development of the background mathematical theories
needed for any particular problem domain. These libraries provide fundamental de�nitions that are
usually taken for granted by a domain expert. For example, fault-tolerant systems rely on voting
which requires a theory about the majority function. The library must provide a de�nition of
majority and proven lemmas for all of the commonly used properties. These libraries are reusable
and in the long run are cost-e�ective; but, the initial costs are a deterrent for industry. Therefore,
members of the local sta� are building a large body of background theories needed for aerospace
applications. The following libraries have been constructed and are available over the internet: (1)
bitvectors library for hardware veri�cation, (2) IEEE
oating point standard, (3) �nite sets, (4)
div and mod over integers, (5) min/max, majority and sorting over arrays and �nite sequences, (6)
summations, (7) real analysis, (8) bags, and (9) elementary graph theory.

24

4.3.5 Formal Modeling of Dynamic Systems

Transition Assertions[20, 21] is an experimental modeling method to represent or specify real-time
systems. The model is intended to be used where timing is a critical element. Timing constrains
can be represented directly in the model and veri�ed using mathematical logic. Variables and
conditions in a system are functions from time to value.

A system is speci�ed by using transition templates which describe a cause and e�ect relation
of the system. Each transition template consists of a durational lower and upper bound, enabling
predicate, and execution predicate. Ten generic transition templates have been created featuring
single transition, multiple transition, transition with preemption, transition with inertia, and a
combination of these.

4.3.6 Veri�cation of Existing Ada Applications Software

Odyssey Research Associates completed two tasks applying their Ada veri�cation tools to aerospace
applications. The �rst task was to verify some utility routines obtained from the NASA Goddard
Space Flight Center and the NASA Lewis Research Center using their Ada Veri�cation Tool named
Penelope [47]. This task was accomplished in two steps: (1) formal speci�cation of the routines
and (2) formal veri�cation of the routines. Both steps uncovered errors [39]. The second task was
to formally specify the mode-control panel logic of a Boeing 737 experimental aircraft system using
Larch (the speci�cation language used by Penelope) [48].

4.3.7 Boeing Hardware Devices

The Boeing Company was contracted by NASA Langley to develop advanced validation and veri�-
cation techniques for
y-by-wire systems. As part of the project, Boeing explored the use of formal
methods. The goal of this work was two-fold: (1) technology transfer of formal methods to Boeing,
and (2) assessment of formal methods technology maturity.

The �rst phase of this project focused on the formal veri�cation of \real" hardware devices
using the HOL hardware veri�cation methodology. With the assistance of a subcontract with U.
C. Davis, Boeing partially veri�ed a set of hardware devices, including a microprocessor[137], a

oating-point coprocessor similar to the Intel 8087 but smaller[102, 101], a direct memory access
(DMA) controller similar to the Intel 8237A but smaller[67], and a set of memory-management
units[122, 119]. U. C. Davis also developed the generic-interpreter theory to aid in the formal
speci�cation and veri�cation of hardware devices[138, 136, 135], and a horizontal-integration theory
for composing veri�ed devices into a system[121, 120, 103, 66]. After demonstrating the feasibility
of verifying standard hardware devices, Boeing applied the methodology to a proprietary hardware
device called the Processor Interface Unit (PIU) that is being developed for aeronautics and space
applications[42].

Boeing and U.C. Davis also performed an assessment of the U.K. Royal Signals and Radar
Establishment's (RSRE) VIPER chip [74]. This was part of a now-completed 3 year Memorandum
of Understanding (MOU) with RSRE. CLI and Langley researchers also performed assessments
of the VIPER project[9, 22, 17]. Application of formal methods to the suite of Intel-like devices
and the PIU demonstrated that formal methods can be practically applied to the digital hardware
devices being developed by Boeing today and provided insight on how to make the process more
cost e�ective.

25

4.3.8 Asynchronous Communication

CLI developed a formal model of asynchronous communication and demonstrated its utility by
formally verifying a widely used protocol for asynchronous communication called the bi-phase mark
protocol, also known as \Bi-�-M," \FM" or \single density" [90]. It is one of several protocols
implemented by microcontrollers such as the Intel 82530 and is used in the Intel 82C501AD Ethernet
Serial Interface.

4.3.9 Digital Design Derivation

Funded in part by a NASA Langley Graduate Student Research Program fellowship, Bhaskar Bose
developed the Digital Design Derivation system (DDD) and used it to design a veri�ed micropro-
cessor. DDD implements a formal design algebra that allows a designer to transform a formal
speci�cation into a correct implementation[7]. Bose formally derived the DDD-FM9001[8] micro-
processor from Hunt's top-level speci�cation of the FM9001 microprocessor[59].

4.3.10 Civil Air Transport Requirements Speci�cation

Work with Boeing to develop a prototype interface for formal requirements analysis of a civil air
transport was completed in 1992[40, 41]. This work, performed under a subcontract to California
Polytechnic State University, included development of a Wide-Spectrum Requirements Speci�cation
Language (WSRSL) and prototype tools to support the language. Portions of a set of requirements
for an Advanced Subsonic Civil Transport (ASCT) developed by a Boeing engineer under previous
NASA funding were rewritten in WSRSL to demonstrate the use of the language and toolset. Since
WSRSL is a formal language, the speci�cations can be formally analyzed for syntactic correctness,
completeness, and consistency.

5 Coordination Activities

5.1 Relationship to NASA Program OÆces

The formal methods research program is currently being funded by NASA Ames' Information Tech-
nology (IT) Program, Langley's Aerospace Vehicle Systems Technology (AVST) Program, Lang-
ley's Aviation Safety Program (AvSP), and Ames' Advanced Aviation Transportation Technology
(AATT) Program.

5.2 FAA/RTCA Involvement

As the federal agency responsible for certi�cation of civil air transports, the FAA shares our in-
terest in promising approaches to engineering and validating ultrareliable
ight-control systems.
Additionally, because the FAA must approve any new methodologies for developing life-critical
digital systems for civil air transports, their acceptance of formal methods is a necessary precur-
sor to its adoption by industry system designers. We are working with Pete Saraceni of the FAA
Technical Center to insure that our program is relevant to the certi�cation process. The FAA
has co-sponsored some of our work. John Rushby of SRI gave a tutorial on formal methods at
an FAA Software Advisory Team (SWAT) meeting at their request. The SWAT team suggested
that we include an assessment of formal methods in an ongoing Guidance Control Software (GCS)
experiment in our branch; Odyssey Research Associates (ORA) developed a formal speci�cation of
the GCS application.

26

John Rushby wrote a chapter for the FAA Digital Systems Validation Handbook Volume III
on formal methods[24], which is also available as a NASA contractor report [111]. The handbook
provides detailed information about digital system design and validation and is used by the FAA
certi�ers. In preparation for this chapter, Rushby produced a comprehensive analysis of formal
methods [109].

George Finelli, the former assistant Branch Head of the System Validation Methods Branch
(the Branch in which the formal methods team worked before NASA Langley's reorganization in
1994) and a member of the RTCA committee formed to develop DO{178B, together with Ben
Di Vito (V��GYAN Inc.), was instrumental in including formal methods as an alternate means of
compliance in the DO{178B standard.

Kelly Hayhurst, a member of the formal methods team, has directed a software engineering
case study of the DO-178B standard. The data from this case study is being used to train FAA
certi�cation specialists and avionics industry representatives in aspects of software certi�cation.

Currently, members of the Langley sta� are involved in RTCA committees SC-180 (Airborne
Electronic Hardware), SC-182 (Minimal Operating Performance Standard for an Airborne Com-
puter Resource), SC-190 (Committee On Application Guidelines For RTCA DO-178b/ED-12b),
and in the ISO sponsored Ada Annex H Rapporteur Group (HRG).

6 Summary

The NASA Langley program in formal methods has three major goals: (1) develop formal methods
technology suitable for a wide range of aerospace designs and (2) facilitate technology transfer
by initiating joint projects between formal methods researchers and aerospace industries to apply
the results of the research to real systems, and (3) capitalize on the formal methods technology
transferred to industry to meet NASA's new goals in increasing aircraft safety and decreasing the
cost of air travel.

Starting in 1991, NASA Langley initiated several aggressive projects designed to move FM into
productive use in the aerospace community:

� Boeing PIU Project (1991)

� Charles Stark Draper FTPP Scoreboard Project (1991)

� Allied Signal Hybrid Fault Models (1992)

� Shuttle Tile Project (1992)

� Space Shuttle Jet Select Project (1993)

� Honeywell Navigation (1993)

� Rockwell Collins AAMP5 (1993)

� Honeywell Tablewise (1994)

� Union Switch and Signal (1994)

� Rockwell Collins AAMP-FV (1995)

� Space Shuttle GPS and 3EO upgrades (1995)

� Integrated Modular Avionics and RTCA SC-182 (1997)

� Collins Mode Confusion Project (1998)

� Translation of UML into PVS (1999)

27

� Formal Analysis of AILS (1999)

� SPIDER (2000)

� Honeywell Technology Center DEOS veri�cation (2000)

� Rockwell Collins requirements analysis and mode confusion (2000)

� Honeywell Engines and Systems: FTIMA for FADEC (2000)

� Barron Associates/BF Goodrich: non-adaptive neural nets. (2000)

� Univ. of Va/Litton: Integration w/ SW lifecycle (2000)

NASA's program has advanced aerospace-related formal methods in the United States to the point
where commercial exploitation of formal methods has begun in some application areas. Our pro-
gram has driven the development of PVS, one of the most widely used general-purpose theorem
prover in the world [97], and the Odyssey Research Associates VHDL-veri�cation tool. Commercial
industry has been anxious to work with our team, although we have not had suÆcient resources
to work with as many as we would have liked. Nevertheless, we have helped lay the necessary
foundation for productive use of formal methods in several companies. We are now exploiting this
newly developed capability in these companies to address NASA's ambitious goal of reducing the
accident rate to 1/10th of today's level within 20 years.

References

[1] Saab Blames Gripen Crash on Software. Aviation Week & Space Technology, Feb. 1989.

[2] Barrett, Geo�: Formal Methods Applied to a Floating-Point Number System. IEEE Trans-
actions on Software Engineering, vol. 15, no. 5, May 1989, pp. 611{621.

[3] Best, David W.; Charles E. Kress, Nick M. Mykris; Russell, Je�rey D.; and Smith, William J.:
An advanced-architecture CMOS/SOS microprocessor. IEEE Micro, vol. 2, no. 4, Aug. 1982,
pp. 11{26.

[4] Bevier, William R.; and Young, William D.: Machine Checked Proofs of the Design and
Implementation of a Fault-Tolerant Circuit. NASA Contractor Report 182099, Nov. 1990.

[5] Bevier, William R.; and Young, William D.: The Proof of Correctness of a Fault-Tolerant Cir-
cuit Design. In Second IFIP Conference on Dependable Computing For Critical Applications,
Tucson, Arizona, Feb. 1991, pp. 107{114.

[6] Bickford, Mark; and Srivas, Mandayam: Veri�cation of the FtCayuga Fault-Tolerant Mi-
croprocessor System (Volume 2: Formal Speci�cation and Correctness Theorems). NASA
Contractor Report 187574, July 1991.

[7] Bose, Bhaskar: DDD - A Transformation System for Digital Design Derivation. Indiana
University, Technical Report 331, Computer Science Department, May 1991.

[8] Bose, Bhaskar; and Johnson, Steven D.: DDD-FM9001: Derivation of a Veri�ed Micropro-
cessor. An Exercise in Integrating Veri�cation with Formal Derivation. In Milne, G.; and
Pierre, L., editors 1993:, Proceedings of IFIP Conference on Correct Hardware Design and
Veri�cation Methods. Springer, LNCS 683, 1993, pp. 191{202. also published as Tech Report
380, Computer Science Department, Indiana University.

28

[9] Brock, Bishop; and Hunt, Jr., Warren A.: Report on the Formal Speci�cation and Partial
Veri�cation of the VIPER Microprocessor. NASA Contractor Report 187540, July 1991.

[10] Butler, Ricky W.: An Elementary Tutorial on Formal Speci�cation and Veri�cation Using
PVS. NASA Technical Memorandum 108991, Sept. 1993.

[11] Butler, Ricky W.; and Di Vito, Ben L.: Formal Design and Veri�cation of a Reliable Com-
puting Platform For Real-Time Control (Phase 2 Results). NASA Technical Memorandum
104196, Jan. 1992.

[12] Butler, Ricky W.; Di Vito, Ben L.; and Holloway, C. Michael: Formal Design and Veri�cation
of a Reliable Computing Platform For Real-Time Control (Phase 3 Results). NASA Technical
Memorandum 109140, Aug. 1994.

[13] Butler, Ricky W.; and Finelli, George B.: The Infeasibility of Experimental Quanti�cation
of Life-Critical Software Reliability. In Proceedings of the ACM SIGSOFT '91 Conference on
Software for Critical Systems, New Orleans, Louisiana, Dec. 1991, pp. 66{76.

[14] Butler, Ricky W.; and Finelli, George B.: The Infeasibility of Quantifying the Reliability of
Life-Critical Real-Time Software. IEEE Transactions on Software Engineering, vol. 19, no. 1,
Jan. 1993, pp. 3{12.

[15] Butler, Ricky W.; and Johnson, Sally C.: Formal Methods For Life-Critical Software. In
Computing in Aerospace 9 Conference, San Diego, CA, Oct. 1993, pp. 319{329.

[16] Butler, Ricky W.; Miller, Steve; Potts, Jim; and Carreno, Victor: A Formal Methods Ap-
proach to the Analysis of Mode Confusion. In 17th Digital Avionics Systems Conference
(DASC'98), Bellevue, WA, Nov. 1998.

[17] Butler, Ricky W.; and Sjogren, Jon A.: Hardware Proofs Using EHDM and the RSRE
Veri�cation Methodology. NASA Technical Memorandum 100669, Dec. 1988.

[18] Butler, Ricky W., (ed.): NASA Formal Methods Workshop 1990. NASA Conference Publi-
cation 10052, Nov. 1990.

[19] Carre~no, Victor A.: Interpretation of IEEE-854 Floating-Point Standard and De�nition in
the HOL system. Sept. 1995.

[20] Carre~no, Victor: The Transition Assertions Speci�cation Method. University of Cambridge
Computer Laboratory, Technical Report 279, Jan. 1993.

[21] Carre~no, Victor: Veri�cation in Higher Order Logic of Mutual Exclusion Algorithm. InHigher
Order Logic Theorem Proving and Its Applications, vol. 780 of Lecture Notes in Computer
Science, pp. 502{515. Springer Verlag, Vancouver, B.C., Canada, Aug. 1993.

[22] Carre~no, Victor A.; and Angellatta, Rob K.: A Case Study for the Real-Time Experimental
Evaluation of the VIPER Microprocessor. NASA Technical Memorandum 104098, Sept. 1991.

[23] Carre~no, Victor A.; and Miner, Paul S.: Speci�cation of the IEEE-854 Floating-Point Stan-
dard in HOL and PVS. In 1995 International Workshop on Higher Order Logic Theorem
Proving and its Applications, Aspen Grove, Utah, Sept. 1995. track B paper and included in
supplemental proceedings.

29

[24] Computer Resource Management Inc.: In Digital Systems Validation Handbook { volume III,
no. DOT/FAA/CT-88/10. FAA.

[25] Courcoubetis, Costas, editor 1993: Computer Aided Veri�cation, CAV '93, vol. 697 of Lecture
Notes in Computer Science, Elounda, Greece, June/July 1993. Springer Verlag.

[26] Crow, Judith; and Di Vito, Ben L.: Formalizing Space Shuttle Software Requirements. In
Workshop on Formal Methods in Software Practice (FMSP '96), San Diego, California, Jan.
1996, pp. 40{48.

[27] Crow, Judy: Finite-State Analysis of Space Shuttle Contingency Guidance Requirements.
NASA Contractor Report 4741, May 1996.

[28] Crow, Judy; Owre, Sam; Rushby, John; Shankar, Natarajan; and Srivas, Mandayam: A Tuto-
rial Introduction to PVS. In WIFT'95 Workshop on Industrial-strength Formal Speci�cation
Techniques, Boca Raton, Florida USA, Apr. 1995.

[29] Cyrluk, David; Rajan, S.; Shankar, N.; and Srivas, M. K.: E�ective Theorem Proving for
Hardware Veri�cation. In Second International Conference on Theorem Proving in Circuit
Design, Theory, Practice, and Experience, Bad Herrenalb, Germany, Sept. 1994.

[30] Cyrluk, David A.; and Srivas, Mandayam K.: Theorem Proving: Not an Esoteric Diversion:
but the Unifying Framework for Industrial Veri�cation. In IEEE International Conference
on Computer Design (ICCD) '95, Austin, Texas, Oct. 1995.

[31] Di Vito, Ben L.: Formalizing New Navigation Requirements for NASA's Space Shuttle. In
Formal Methods Europe (FME '96), Oxford, England, Mar. 1996, pp. 160{178. Lecture Notes
in Computer Science 1051, Springer.

[32] Di Vito, Ben L.: A Formal Model of Partitioning for Integrated Modular Avionics. NASA
Langley Research Center, Contractor Report 1998-208703, Hampton, VA, Aug. 1998.

[33] Di Vito, Ben L.; and Butler, Ricky W.: Provable Transient Recovery for Frame-Based,
Fault-Tolerant Computing Systems. In Real-Time Systems Symposium, Phoenix, Az, Dec.
1992.

[34] Di Vito, Ben L.; and Butler, Ricky W.: Formal Techniques for Synchronized Fault-Tolerant
Systems. In Dependable Computing for Critical Applications 3, Dependable Computing and
Fault-Tolerant Systems, pp. 279{306. Springer Verlag, Wien New York, 1993. Also presented
at 3rd IFIP Working Conference on Dependable Computing for Critical Applications, Mon-
dello, Sicily, Italy, Sept. 14{16, 1992.

[35] Di Vito, Ben L.; Butler, Ricky W.; and Caldwell, James L.: High Level Design Proof
of a Reliable Computing Platform. In Dependable Computing for Critical Applications 2,
Dependable Computing and Fault-Tolerant Systems, pp. 279{306. Springer Verlag, Wien
New York, 1992. Also presented at 2nd IFIP Working Conference on Dependable Computing
for Critical Applications, Tucson, AZ, Feb. 18{20, 1991, pp. 124{136.

[36] Di Vito, Ben L.; Butler, Ricky W.; and Caldwell, James L., II: Formal Design and Veri�cation
of a Reliable Computing Platform For Real-Time Control (Phase 1 Results). NASA Technical
Memorandum 102716, Oct. 1990.

30

[37] Di Vito, Ben L.; and Roberts, Larry W.: Using Formal Methods to Assist in the Require-
ments Analysis of the Space Shuttle GPS Change Request. NASA Langley Research Center,
Contractor Report 4752, Hampton, VA, Aug. 1996.

[38] Dill, David L.; Drexler, Andreas J.; Hu, Alan J.; and Yang, C. Han: Protocol Veri�cation as
a Hardware Design Aid. In 1992 IEEE International Conference on Computer Design: VLSI
in COmputers and Processors, Cambridge, MA, Oct. 1992, pp. 522{525.

[39] Eichenlaub, Carl T.; Harper, C. Douglas; and Hird, Geo�rey: Using Penelope to Assess the
Correctness of NASA Ada Software: A Demonstration of Formal Methods as a Counterpart
to Testing. NASA Contractor Report 4509, May 1993.

[40] Fisher, Gene; Frincke, Deborah; Wolber, Dave; and Cohen, Gerald C.: Structured Represen-
tation for Requirements and Speci�cations. NASA Contractor Report 187522, July 1991.

[41] Frincke, Deborah; Wolber, Dave; Fisher, Gene; and Cohen, Gerald: Requirements Speci�ca-
tion Language (RSL) and Supporting Tools. Nov. 1992.

[42] Fura, David A.; Windley, Phillip J.; and Cohen, Gerald C.: Formal Design Speci�cation of a
Processor Interface Unit. NASA Contractor Report 189698, Nov. 1992.

[43] Garmen, John R.: The Bug Heard 'Round The World. ACM Software Engineering Notes,
vol. 6, no. 5, Oct. 1981, pp. 3{10.

[44] Gibbs, W. Wayt: Software's Chronic Crisis. Scienti�c American, Sept. 1994, pp. 86{95.

[45] Goldberg, Jack; et al.: Development and Analysis of the Software Implemented Fault-
Tolerance (SIFT) Computer. NASA Contractor Report 172146, 1984.

[46] Gong, Li; Lincoln, Patrick; and Rushby, John: Byzantine Agreement with Authentication:
Observations and Applications in Tolerating Hybrid and Link Faults. In Dependable Com-
puting for Critical Applications (DCCA-5), Champaign, IL, Sept. 1995.

[47] Guaspari, David: Penelope, an Ada Veri�cation System. In Proceedings of Tri-Ada '89,
Pittsburgh, PA, Oct. 1989, pp. 216{224.

[48] Guaspari, David: Formally Specifying the Logic of an Automatic Guidance Controller. In
Ada-Europe Conference, Athens, Greece, May 1991.

[49] Hamilton, Margaret: Zero-defect software: the elusive goal. IEEE Spectrum, Mar. 1986.

[50] Harper, Richard E.; Lala, Jay H.; and Deyst, John J.: Fault Tolerant Parallel Processor
Architecture Overview. In Proceedings of the 18th Symposium on Fault Tolerant Computing,
1988, pp. 252{257.

[51] Hayhurst, Kelly J.; Dorsey, Cheryl A.; Knight, John C.; Leveson, Nancy G.; and McCormick,
G. Frank: Streamlining Software Aspects of Certi�cation: Report on the SSAC Survey.
Technical report, Aug. 1999.

[52] Holloway, C. Michael: Third NASA Formal Methods Workshop 1995. NASA Conference
Publication 10176, June 1995.

31

[53] Holloway, C. Michael: Lfm2000 Fifth NASA Langley Formal Methods Workshop. Technical
Report 2000, 2000.

[54] Holloway, C. Michael; and Hayhurst, Kelly J.: Lfm97 Fourth NASA Langley Formal Methods
Workshop. NASA Conference Publication 3356, Sept. 1997.

[55] Hoover, D. N.; Guaspari, David; and Humenn, Polar: Applications of Formal Methods to
Speci�cation and Safety of Avionics Software. NASA Contractor Report 4723, Apr. 1996.

[56] Hoover, Doug; and Chen, Zewei: TBell: A Mathematical Tool for Analyzing Decision Tables.
NASA Contractor Report 195027, Nov. 1994. Note: Tbell is now known as TableWise.

[57] Hoover, Doug N.: A Mathematical Model for Railway Control Systems. NASA Contractor
Report 198353, June 1996.

[58] Houston, Iain; and King, Steve: CICS Project Report: Experiences and Results from the
Use of Z in IBM. In Prehn, S.; and Toetenel, W.J., editors 1991:, VDM '91: Formal Software
Development Methods, Noordwijkerhout, The Netherlands, Oct. 1991, Springer Verlag, pp.
588{596. Volume 1: Conference Contributions.

[59] Hunt, Warren A.: A Formal HDL and its use in the FM9001 Veri�cation. In Hoare, C.A.R.;
and Gordon, M.J., editors 1992:, Mechanized Reasoning in Hardware Design. Prentice-Hall,
1992.

[60] IEEE. IEEE Standard for Radix-Independent Floating-Point Arithmetic, 1987. ANSI/IEEE
Std 854-1987.

[61] John Kelly, et. al.: Formal Methods Demonstration Project for Space Applications - Phase
I Case Study: Space Shuttle Orbit DAP Jet. Dec. 1993.

[62] Johnson, Sally C.; and Butler, Ricky W.: Design For Validation. In AIAA/IEEE 10th Digital
Avionics Systems Conference, Los Angeles, California, Oct. 1991, pp. 487{492.

[63] Johnson, Sally C.; and Butler, Ricky W.: Design For Validation. IEEE Aerospace and
Electronics Systems, Jan. 1992, pp. 38{43.

[64] Johnson, Sally C.; Holloway, C. Michael; and Butler, Ricky W.: Second NASA Formal
Methods Workshop 1992. NASA Conference Publication 10110, Nov. 1992.

[65] Joyce, Ed: Software Bugs: A Matter of Life and Liability. Datamation, May 1987.

[66] Kalvala, Sara; Archer, Myla; and Levitt, Karl: A Methodology for Integrating Hardware
Design and Veri�cation. In ACM International Workshop on Formal Methods in VLSI Design,
Miami, FL, Jan. 1991.

[67] Kalvala, Sara; Levitt, Karl; and Cohen, Gerald C.: Design and Veri�cation of a DMA
Processor. NASA contractor report, 1992. Unpublished.

[68] Knight, John C.; and Leveson, Nancy G.: An experimental evaluation of the assumptions
of independence in multiversion programming. IEEE Transactions on Software Engineering,
vol. SE-12, no. 1, Jan. 1986, pp. 96{109.

32

[69] Knight, John. C.; and Leveson, Nancy. G.: A Reply To the Criticisms Of The Knight &
Leveson Experiment. ACM SIGSOFT Software Engineering Notes, Jan. 1990.

[70] Lamport, Leslie: Using Time Instead of Timeout for Fault-Tolerant Distributed Systems.
ACM Transactions on Programming Languages and Systems, vol. 6, no. 2, Apr. 1984, pp.
254{280.

[71] Lamport, Leslie; and Melliar-Smith, P. M.: Synchronizing Clocks in the Presence of Faults.
Journal Of The ACM, vol. 32, no. 1, Jan. 1985, pp. 52{78.

[72] Lamport, Leslie; Shostak, Robert; and Pease, Marshall: The Byzantine Generals Problem.
ACM Transactions on Programming Languages and Systems, vol. 4, no. 3, July 1982, pp.
382{401.

[73] Leveson, Nancy G.: Software Safety: What, Why, and How. Computing Surveys, vol. 18,
no. 2, June 1986.

[74] Levitt, Karl; and et. al.: Formal Veri�cation of a Microcoded VIPER Microprocessor using
HOL. NASA Contractor Report 4489, Feb. 1993.

[75] Lincoln, Patrick; and Rushby, John: Formal Veri�cation of an Algorithm for Interactive
Consistency under a Hybrid Fault Model. In Courcoubetis [25], pp. 292{304.

[76] Lincoln, Patrick; and Rushby, John: A Formally Veri�ed Algorithm For Interactice Consis-
tency Under a Hybrid Fault Model. NASA Contractor Report 4527, July 1993.

[77] Lincoln, Patrick; and Rushby, John: A Formally Veri�ed Algorithm for Interactive Consis-
tency under a Hybrid Fault Model. In Fault Tolerant Computing Symposium 23, Toulouse,
France, June 1993, IEEE Computer Society, pp. 402{411.

[78] Lincoln, Patrick; and Rushby, John: Formal Veri�cation of an Interactive Consistency Al-
gorithm for the Draper FTP Architecture under a Hybrid Fault Model. In 1994 Computer
Assurance (COMPASS) Conference, June 1994.

[79] Miller, Steve; and Srivas, Mandayam: Formal Veri�cation of the AAMP5 Microprocessor: A
Case Study in the Industrial Use of Formal Methods. In WIFT'95 Workshop on Industrial-
strength Formal Speci�cation Techniques, Boca Raton, Florida USA, Apr. 1995, pp. 30{43.

[80] Miller, Steven P.; and Potts, James N.: Detecting Mode Confusion Through Formal Modeling
and Analysis. Technical Report CR-1999-208971, Jan. 1999.

[81] Miner, Paul S.: An Extension to Schneider's General Paradigm for Fault-Tolerant Clock
Synchronization. NASA Technical Memorandum 107634, Langley Research Center, Hampton,
VA, 1992.

[82] Miner, Paul S.: A Veri�ed Design of a Fault-Tolerant Clock Synchronization Circuit: Pre-
liminary Investigations. NASA Technical Memorandum 107568, Mar. 1992.

[83] Miner, Paul S.: Veri�cation of Fault-Tolerant Clock Synchronization Systems. NASA Tech-
nical Paper 3349, Nov. 1993.

[84] Miner, Paul S.: De�ning the IEEE-854 Floating-Point Standard in PVS. NASA, NASA
Technical Memorandum 110167, Langley Research Center, Hampton, VA, June 1995.

33

[85] Miner, Paul S.: Hardware Veri�cation using Coinductive Assertions. PhD thesis, Computer
Science Department, Indiana University, USA, 1997.

[86] Miner, Paul S.; and Johnson, Steven D.: Veri�cation of an Optimized Fault-Tolerant Clock
Synchronization Circuit. In Sheeran, Mary; and Singh, Satnam, editors 1996:, Designing
Correct Circuits, Electronic Workshops in Computing, Bastad, Sweden, Sept. 1996, Springer-
Verlag.

[87] Miner, Paul S.; and Leathrum, James F., Jr.: Veri�cation of IEEE Compliant Subtractive
Division Algorithms. In Srivas, Mandayam K., editor 1996:, Formal Methods in Computer-
Aided Design, FMCAD '96, Lecture Notes in Computer Science, Palo Alto, CA, Nov. 1996,
Springer-Verlag. To Appear.

[88] Miner, Paul S.; Padilla, Peter A.; and Torres, Wilfredo: A Provably Correct Design of a
Fault-Tolerant Clock Synchronization Circuit. In 11th Digital Avionics Systems Conference,
Seattle, WA, Oct. 1992, pp. 341{346.

[89] Miner, Paul S.; Pullela, Shyamsundar; and Johnson, Steven D.: Interaction of Formal Design
Systems in the Development of a Fault-Tolerant Clock Synchronization Circuit. In 13th
Symposium on Reliable Distributed Systems. IEEE Computer Society Press, 1994, pp. 128{
137. Proceedings of SRDS 94 held at Dana Point, California, October 1994.

[90] Moore, J Strother: A Formal Model of Asynchronous Communication and Its Use in Me-
chanically Verifying a Biphase Mark Protocol. NASA Contractor Report 4433, June 1992.

[91] Moore, J Strother: Mechanically Veri�ed Hardware Implementing an 8-bit Parallel IO Byzan-
tine Agreement Processor. NASA Contractor Report 189588, Apr. 1992.

[92] National Aeronautics and Space Administration, OÆce of Safety and Mission Assurance,
Washington, DC. Formal Methods Speci�cation and Veri�cation Guidebook for Software and
Computer Systems, Volume I: Planning and Technology Insertion, July 1995.

[93] National Aeronautics and Space Administration, OÆce of Safety and Mission Assurance,
Washington, DC. Formal Methods Speci�cation and Veri�cation Guidebook for Software and
Computer Systems, Volume II: A Practitioner's Companion, May 1997.

[94] Neumann, Peter G.: Some Computer-Related Disasters and Other Egregious Horrors. ACM
Software Engineering Notes, vol. 10, no. 1, Jan. 1985, pp. 6{12.

[95] Owre, S.; Shankar, N.; and Rushby, J. M.: The PVS Speci�cation Language (Beta Release).
Computer Science Laboratory, SRI International, Menlo Park, CA, Feb. 1993.

[96] Owre, S.; Shankar, N.; and Rushby, J. M.: User Guide for the PVS Speci�cation and
Veri�cation System (Beta Release). Computer Science Laboratory, SRI International, Menlo
Park, CA, Feb. 1993.

[97] Owre, Sam; Rushby, John; ; Shankar, Natarajan; and von Henke, Friedrich: Formal Veri�ca-
tion for Fault-Tolerant Architectures: Prolegomena to the Design of PVS. IEEE Transactions
on Software Engineering, vol. 21, no. 2, Feb. 1995, pp. 107{125.

[98] Owre, Sam; Rushby, John; and Shankar, Natarajan: Analyzing Tabular and State-Transition
Requirements Speci�cations in PVS. NASA Contractor Report 201729, July 1997.

34

[99] Owre, Sam; Rushby, John; Shankar, Natarajan; and Srivas, Mandayam: A Tutorial Using
PVS For Hardware Veri�cation. In Second International Conference on Theorem Proving in
Circuit Design, Theory, Practice, and Experience, Bad Herrenalb, Germany, Sept. 1994.

[100] Owre, Same; and Shankar, Natarajan: Abstract Datatypes in PVS. NASA Contractor Report
97-206264, Nov. 1997.

[101] Pan, Jing; and Levitt, Karl: Towards a Formal Speci�cation of the IEEE Floating-Point Stan-
dard with Application to the Veri�cation of Floating-Point Coprocessors. In 24th Asilomar
Conference on Signals, Systems & Computers, Monterrey, CA., Nov. 1990.

[102] Pan, Jing; Levitt, Karl; and Cohen, Gerald C.: Toward a Formal Veri�cation of a Floating-
Point Coprocessor and its Composition with a Central Processing Unit. NASA Contractor
Report 187547, Aug. 1991.

[103] Pan, Jing; Levitt, Karl; and Schubert, E. Thomas: Toward a Formal Veri�cation of a
Floating-Point Coprocessor and its Composition with a Central Processing Unit. In ACM
International Workshop on Formal Methods in VLSI Design, Miami, FL, Jan. 1991.

[104] Rajan, S.; Shankar, N.; and Srivas, M. K.: An Integration of Model Checking with Automated
Proof Checking. In Computer Aided Veri�cation (CAV 95), Liege, Belgium, July 1995.

[105] Roberts, Larry W.; and Beims, Mike: Using Formal Methods to Assist in the Requirements
Analysis of the Space Shuttle HAC Change Request (CR 90960E). NASA Johnson Space
Center, Technical report, 1996. To appear.

[106] Rogers, Michael; and Gonzalez, David L.: Can We Trust Our Software? Newsweek, Jan.
1990.

[107] Rushby, John: Formal Speci�cation and Veri�cation of a Fault-Masking and Transient-
Recovery Model for Digital Flight-Control Systems. NASA Contractor Report 4384, July
1991.

[108] Rushby, John: Formal veri�cation of an Oral Messages algorithm for interactive consistency.
NASA Contractor Report 189704, Oct. 1992.

[109] Rushby, John: Formal Methods and Digital Systems Validation for Airborne Systems. NASA
Contractor Report 4551, Dec. 1993.

[110] Rushby, John: A Formally Veri�ed Algorithm Clock Sychronization Under a Hybrid Fault
Model. In ACM Principles of Distributed Computing '94, Aug. 1994.

[111] Rushby, John: Formal Methods and Their Role in Digital Systems Validation for Airborne
Systems. NASA Contractor Report 4673, Aug. 1995.

[112] Rushby, John: Recon�guration and Transient Recovery in State-Machine Architectures.
In 26th Annual International Symposium on Fault-tolerant Computing (FTCS-26), Sendai,
Japan, June 1996.

[113] Rushby, John: Systematic Formal Veri�cation for Fault-Tolerant Time-Triggered Algorithms.
In Meadows, Catherine; and Sanders, William, editors 1997:, Dependable Computing for
Critical Applications|6, Garmisch-Partenkirchen, Germany, Mar. 1997, IEEE Computer
Society, pp. 191{210.

35

[114] Rushby, John: Partitioning in Avionics Architectures: Requirements, Mechanisms, and As-
surance. NASA Contractor Report CR-1999-209347, June 1999.

[115] Rushby, John; and von Henke, Friedrich: Formal Veri�cation of a Fault-Tolerant Clock
Synchronization Algorithm. NASA Contractor Report 4239, June 1989.

[116] Rushby, John; and von Henke, Friedrich: Formal Veri�cation of Algorithms for Critical
Systems. IEEE Transactions on Software Engineering, vol. 19, no. 1, Jan. 1993, pp. 13{23.

[117] Schneider, Fred B.: Understanding Protocols for Byzantine Clock Synchronization. Cornell
University, Ithaca, NY, Technical Report 87-859, Aug. 1987.

[118] Schrage, Michael: `When the Chips Are Down' Will Likely Be Heard More Often in Com-
puting. The Washington Post, pp. B3. December 16, 1994.

[119] Schubert, Thomas; and Levitt, Karl: Veri�cation of Memory Management Units. In Second
IFIP Conference on Dependable Computing For Critical Applications, Tucson, Arizona, Feb.
1991, pp. 115{123.

[120] Schubert, Thomas; Levitt, Karl; and Cohen, Gerald C.: Towards Composition of Veri�ed
Hardware Devices. NASA Contractor Report 187504, Nov. 1991.

[121] Schubert, Thomas; Levitt, Karl; and Cohen, Gerald C.: Formal Mechanization of Device
Interactions With a Process Algebra. NASA Contractor Report 189644, Nov. 1992.

[122] Schubert, Thomas; Levitt, Karl; and Cohen, Gerald C.: Formal Veri�cation of a Set of
Memory Management Units. NASA Contractor Report 189566, 1992.

[123] Shankar, N.; and Owre, S.: PVS Semantics. NASA Contractor Report yyy, 1998.

[124] Shankar, N.; Owre, S.; and Rushby, J. M.: The PVS Proof Checker: A Reference Manual
(Beta Release). Computer Science Laboratory, SRI International, Menlo Park, CA, Feb. 1993.

[125] Shankar, Natarajan: Mechanical Veri�cation of a Schematic Byzantine Clock Synchronization
Algorithm. NASA Contractor Report 4386, July 1991.

[126] Shankar, Natarajan: Mechanical Veri�cation of a Generalized Protocol for Byzantine Fault-
Tolerant Clock Synchronization. In Second International Symposium on Formal Techniques
in Real Time and Fault Tolerant Systems, vol. 571 of Lecture Notes in Computer Science, pp.
217{236. Springer Verlag, Nijmegen, The Netherlands, Jan. 1992.

[127] Shankar, Natarajan: Veri�cation of Real-Time Systems Using PVS. In Courcoubetis [25],
pp. 280{291.

[128] Shankar, Natarajan; Owre, Sam; and Rushby, John: PVS Tutorial. Computer Science
Laboratory, SRI International, Menlo Park, CA, Feb. 1993. Also appears in Tutorial Notes,
Formal Methods Europe '93: Industrial-Strength Formal Methods, pages 357{406, Odense,
Denmark, April 1993.

[129] Srivas, Mandayam: EÆcient Validation of Superscalar Microprocessors. NASA contractor
report, 1998. To be published.

36

[130] Srivas, Mandayam; and Bickford, Mark: Veri�cation of the FtCayuga Fault-Tolerant Micro-
processor System (Volume 1: A Case Study in Theorem Prover-Based Veri�cation). NASA
Contractor Report 4381, July 1991.

[131] Srivas, Mandayam; and Bickford, Mark: Moving Formal Methods Into Practice: Verifying
the FTPP Scoreboard: Phase 1 Results. NASA Contractor Report 189607, May 1992.

[132] Srivas, Mandayam; and Miller, Steve: Formal Veri�cation of an Avionics Microprocessor.
NASA Contractor Report 4682, July 1995.

[133] Walter, C. J.; Kieckhafer, R. M.; and Finn, A. M.: MAFT: A Multicomputer Architecture
for Fault-Tolerance in Real-Time Control Systems. In Real Time Systems Symposium, Dec.
1985.

[134] Wiener, Lauren Ruth: Digital Woes. Addison-Wesley Publishing Company, 1993. ISBN
0-201-62609-8.

[135] Windley, Phillip J.: Abstract Hardware. In ACM International Workshop on Formal Methods
in VLSI Design, Miami, FL, Jan. 1991.

[136] Windley, Phillip J.: The Formal Veri�cation of Generic Interpreters. In 28th Design Au-
tomation Conference, San Franciso, CA, June 1991.

[137] Windley, Phillip J.; Levitt, Karl; and Cohen, Gerald C.: Formal Proof of the AVM-1 Micro-
processor Using the Concept of Generic Interpreters. NASA Contractor Report 187491, Mar.
1991.

[138] Windley, Phillip J.; Levitt, Karl; and Cohen, Gerald C.: The Formal Veri�cation of Generic
Interpreters. NASA Contractor Report 4403, Oct. 1991.

[139] Young, William D.: Verifying the Interactive Convergence Clock Synchronization Algorithm
Using the Boyer-Moore Theorem Prover. NASA Contractor Report 189649, Apr. 1992.

37

